Презентация, доклад на тему первый урок геометрии в 10 классе стереометрия

Геометрия, 7—9 классы (л. с. атанасян, в. ф. бутузов, с. б. кадомцев и др.) 2010

Пространственные измерения углов

Для получения пространственного положения точек местности и отображения их на плоскости в геодезии применяются способы измерения расстояний и углов между ними с помощью различных геодезических приборов.

Качественной характеристикой геодезических и маркшейдерских измерений считается точность их выполнения, которая зависит от многих факторов и аспектов. Одним из них являются средства измерения. Существует своеобразный инженерный подход для выбора соответствующего инструмента требуемой точности работ. Так что все приборы измеряющие углы можно разделить по точности исполнения измерений.

Как найти прямой угол 90 градусов

Как найти угол 90 градусов с помощью строительной рулетки и карандаша?

Многие строители сталкивались с такой проблемой — как найти угол 90 градусов или, как узнать — угол тупой (больше 90 градусов) или острый (меньше 90 градусов).

Не будем, возвращается к школьной геометрии, и изучать хитроумные слова, а рассмотрим на практике, где каждый человек, буквально за одну минуту, сможете определить, сколько градусов имеет тот или другой угол. А за 5 минут, вы сможете сделать точный угольник с прямым углом, то есть 90°.

Возьмем к примеру. На одной стороне (на катете “ a ”) отмеряем 60 см. Затем на другой стороне (катет “ b ”) отмеряем 80 см. Если от точки “ a ” к точки “ b ” перпендикуляр “ c ” будет составлять 100 см (1 метр) значит, угол имеет 90 градусов. Если больше, например 1.1 м угол тупой, а когда 0.9 м, угол острый. Таким образом, с помощью строительной рулетки и карандаша мы смогли получить прямой угол.

Теперь разуберём цифры 60 и 80 и почему перпендикуляр должен иметь 1 м. Берем комбинацию чисел “3,4,5” и каждую цифру умножаем на свое придуманное число – например “5”.

3(умножаем)5=15 катет 4*5=20 катет 5*5=25 гипотенуза

В выше представленном примере, мы взяли числа “30, 40, 50” и каждое число умножили на “2”, таким способом, у нас получилась такая комбинация: 30*2=60 катет 40*2=80 катет 50*2=100 гипотенуза

Как сделать угол 45 градусов с помощью строительной рулетки и карандаша?

Перед тем, чтобы получить угол 45 градусов, по выше изложенной системе сделайте прямой угол. Затем, на катете “ а ” и ” b ” измеряем одинаковые размера и проводим гипотенузу. Измеряем гипотенузу и разделяем на два (/2). Затем проводим линию к прямому углу. Таким способом мы разделили 90 градусов на 45 – две одинаковые части по 45°.

Как сделать самому угольник с прямым углом за 5 минут?

1 Соединяем между собой две ровные деревянные рейки, так чтобы одна из них была перпендикулярная другой.

2 Затем измеряем два катета по выше изложенной системе.

3 Прибываем деревянную рейку к первой метке

4 Измеряем гипотенузу и фиксируем на втором катете.

5 Проверяем все размеры и во всех местах дополнительно фиксируем.

6 Затем лишние части обрезаем.

Разновидности транспортиров.

  • Круговые (360 градусов).
  • Геодезические, которые бывают двух типов: ТГ-А — для построения и измерения углов на планах и картах; ТГ-Б — для нанесения точек на чертежной основе по известным углам и расстояниям. Цена деления угломерной шкалы — 0,5°, прямолинейной — 1 миллиметр.
  • Улучшенные типы транспортиров, которые необходимы для более точных построений и измерений. Например, существуют специальные транспортиры с прозрачной линейкой с угломерным нониусом, которая вращается вокруг центра.

ЦИРКУЛЬпока они не упрутся в стенкиштангенциркуль«Измерительные работы на местности в курсе геометрии ».Цели проведения уроков “Измерение на местности”:

  • практическое применение теоретических знаний;
  • активизация познавательной деятельности;
  • взаимосвязи теории с практикой;
  • научности;
  • наглядности;
  • учёта возрастных и индивидуальных особенностей учащихся;
  • сочетания коллективной и индивидуальной деятельности участников;
  • дифференцированного подхода;

уроках геометрии практических работ

  • “Провешивание прямой на местности” (п.2),
  • “Измерительные инструменты” (п.8),
  • “Измерение углов на местности” (п.10),
  • “Построение прямых углов на местности” (п.13),
  • “Задачи на построение. Окружность” (п.21),
  • “Практические способы построения параллельных прямых” (п.26),
  • “Уголковый отражатель” (п.36),
  • “Расстояние между параллельными прямыми” (п.37 – рейсмус),
  • “Построение треугольника по трём элементам” (п.38)

“Практические приложения подобия треугольников” (п.64 – определение высоты предмета, определение расстояния до недоступной точки)

“Измерительные работы” (п.100 – измерение высоты предмета, измерение расстояния до недоступной точки).

  • практическое применение теоретических знаний учащихся;
  • активизация познавательной деятельности учащихся;
  • расширение кругозора учащихся;
  • повышение интереса к предмету;
  • развитие смекалки, любознательности, логического и творческого мышления;
  • формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе
  • взаимосвязи теории с практикой;
  • научности;
  • наглядности;
  • учёта возрастных и индивидуальных особенностей учащихся;
  • сочетания коллективной и индивидуальной деятельности участников;
  • дифференцированного подхода;
  • активность учащихся;
  • самостоятельность учащихся в выполнении заданий;
  • практические применения математических знаний;
  • уровень творческих способностей участников.
  • подключить, пробудить и развить потенциальные способности учащихся;
  • выявить наиболее активных и способных участников;
  • воспитывать нравственные качества личности: трудолюбие, упорство в достижении цели, ответственность и самостоятельность.
  • научить применять математические знания в повседневной практической жизни;
  • обращаться с различными приборами, инструментами, вычислительной техникой, справочниками и таблицами.
  • Рулетка – лента, с нанесёнными на ней делениями, предназначена для измерения расстояния на местности.
  • Экер – прибор для построения прямых углов на местности.
  • Астролябия – прибор для измерения углов на местности.
  • Вехи (вешки) – колья, которые вбивают в землю.
  • Землемерный циркуль ( полевой циркуль – сажень) – инструмент в виде буквы А высотой 1,37 м и шириной 2 м. для измерения расстояния на местности, для учащихся удобнее расстояние между ножками взять 1 метр.

Экерпроходящие через нихАстролябия1. Построение прямой на местности (провешивание прямой линии)2. Измерение средней длины шага.3. Построение прямых углов на местности.4. Построение и измерение углов с помощью астролябии.

  • измерение заданных углов,
  • построение углов заданной градусной меры,
  • построение треугольника по трём элементам – по стороне и двум прилежащим к ней углам, по двум сторонам и углу между ними.

5. Построение окружности на местности.6. Определение высоты предмета.1111111о111Построим два прямоугольных треугольника7. Определение расстояния до недоступной точки.1111!11111111111111.1111111112. Измерение расстояния до недоступной точки ( измерение ширины реки).Получается треугольник222ЗАКЛЮЧЕНИЕ:2.Главное:Чтобы гарантировать точность размеров и соответствие действующим стандартам, необходимо использовать высокоточные измерительные приборыИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕЛитература:Геометрия. 8 класс. Измерительные материалы: — Санкт-Петербург, ВАКО, 2014 г.Учебник: Г. Г. Шишкин, А. Г. Шишкин — Москва, Юрайт, 2014 г.-

Астролябия

Устройство: астролябия состоит из двух частей: диска (лимб), разделённого на градусы, и вращающейся вокруг центра линейки (алидады). При измерении угла на местности она наводится на предметы, лежащие на его сторонах. Наведение алидады называется визированием. Для визирования служат диоптры. Это металлические пластинки с прорезами. Диоптров два: один с прорезом в виде узкой щели, другой с широким прорезом, посередине которого натянут волосок. При визировании к узкому прорезу прикладывается глаз наблюдателя, поэтому диоптр с таким прорезом называется глазным. Диоптр с волоском направляется к предмету, лежащему на стороне измеряемого; он называется предметным. В середине алидады прикреплён к ней компас.

Список и (краткие характеристики некоторых приборов)

Можно построить прямой угол лазерной рулеткой на небольшом участке местности.

Прибор, довольно прост в обращении. По своему устройству может быть: призменный или зеркальный.

Более сложный прибор, измеряет не только горизонтальные, но и вертикальные углы. Широко используется в строительстве, в геодезических и других работах.

Теодолит, лазерный дальномер и компьютер в одном приборе.

Это очень сложные приборы, которые применяются в горных исследованиях. Они могут построить не только прямо расположенные углы, но и круто-наклонные углы вертикальной или горизонтальной направленности.

Угломеры

Следующим прибором, служащим для измерения углов, применяющимся в маркшейдерском производстве, безусловно, считается угломер горный. Этот инструмент используется для определения линии и формы очистного забоя в подземных горных выработках угольных шахт. Развитие и применение таких приборов проходило на протяжении практически всего советского периода страны, последний из них У-60 выпускался со специальными визирными марками.

Точность измерения углов такими приборами относительно не высокая, но вполне достаточная для тех работ, которые выполняются с их помощью. Зависит она в первую очередь от точности снятия отсчетов и цены деления механической части шкалы, а именно: отсчетного устройства лимба с дополнительными шкалами (нониус, верньер).

Определение прямого угла с использованием теодолита и нивелира

Для определения прямого угла на местности можно использовать специальные инструменты, такие как теодолит и нивелир. С их помощью можно достичь высокой точности при измерениях и выполнении геодезических работ.

Теодолит – это оптико-электронный прибор, который позволяет измерять горизонтальные и вертикальные углы с высокой точностью. Он состоит из основания, на котором установлен горизонтальный и вертикальный диск, а также оптической системы с бликолючей.

Для определения прямого угла с использованием теодолита следует выполнить следующие шаги:

  1. Установите теодолит на стационарное основание, которое должно быть надежно закреплено и иметь устойчивую платформу.
  2. Отцентрируйте теодолит, чтобы он был выровнен по горизонтали и вертикали, используя специальные центровочные винты и два уровня.
  3. Визирным штативным устройством наведите теодолит на первую точку, которую необходимо измерить.
  4. Зафиксируйте значение горизонтального угла на диске теодолита.
  5. Поверните теодолит на 90 градусов против часовой стрелки с помощью вертикального диска.
  6. Визирным штативным устройством наведите теодолит на вторую точку.
  7. Зафиксируйте значение горизонтального угла на диске теодолита.
  8. Если значение измеренных углов равно 90 градусам, то можно сделать вывод, что между двумя точками имеется прямой угол.

Также можно использовать нивелир для определения прямого угла. Нивелир – это геодезический инструмент, предназначенный для выполнения геодезических измерений и определения высотных различий. Для определения прямого угла с помощью нивелира необходимо провести горизонтальную прямую, а затем измерить угол между горизонтальной прямой и отрезком, соединяющим две точки.

Использование теодолита и нивелира для определения прямого угла позволяет получить точные измерения на местности и использовать их в строительстве, картографии и других областях.

Определение перпендикулярных прямых

Перпендикулярные прямые.

Пусть а и b — прямые, пересекающиеся в точке А (рис. 1). Каждая из этих прямых точкой А делится на две полупрямые. Полупрямые одной прямой образуют с полупрямыми другой прямой четыре угла. Пусть альфа — один из этих углов. Тогда любой из остальных трех углов будет либо смежным с углом альфа, либо вертикальным с углом альфа.

Отсюда следует, что если один из углов прямой, то остальные углы тоже будут прямые, В этом случае мы говорим, что прямые пересекаются под прямым углом.Определение.Две прямые называются перпендикулярными, если они пересекаются под прямым углом (рис. 2).

Перпендикулярность прямых обозначается знаком ⊥ Запись а ⊥ b читается: Прямая а перпендикулярна прямой b.Теорема.

Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну.

Доказательство.Пусть а — данная прямая и А — данная точка на ней. Обозначим через ах одну из полупрямых прямой а с начальной точкой А (рис. 3). Отложим от полупрямой а1 угол  (a1b1), равный 90°.Тогда прямая, содержащая луч b1, будет перпендикулярна прямой а.

Допустим, что существует другая прямая, проходящая через точку А и перпендикулярная прямой а. Обозначим через с1 полупрямую этой прямой, лежащую в одной полуплоскости с лучом b2. Углы (a1b1) и (a1c1), равные каждый 90°, отложены в одну полуплоскость от полупрямой а1. Но от полупрямой а1 в данную полуплоскость можно отложить только один угол, равный 90°. Поэтому не может быть другой прямой, проходящей через точку А и перпендикулярной прямой а. Теорема доказана.

Определение.

Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра.На рисунке 4 перпендикуляр АВ проведен из точки А к прямой а. Точка В — основание перпендикуляра.

Для построения перпендикуляра пользуются чертежным угольником (рис. 5).

Две пересекающиеся прямые называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла. Перпендикулярность прямых АС и ВD обозначается так: АС ⊥ ВD (читается: «Прямая АС перпендикулярна к прямой ВD»).Отметим, что две прямые, перпендикулярные к третьей, не пересекаются (рис. 6,а). В самом деле, рассмотрим прямые АА1 и ВВ1, перпендикулярные к прямой РQ (рис. 6,б). Мысленно перегнем рисунок по прямой РQ так, чтобы верхняя часть рисунка наложилась на нижнюю. Так как прямые углы 1 и 2 равны, то луч РА наложится на луч РА1. Аналогично, луч QВ наложится на луч QB1. Поэтому, если предположить, что прямые АА1 и ВВ1 пересекаются в точке М, то эта точка наложится на некоторую точку М1 также лежащую на этих прямых (рис. 6,в), и мы получим, что через точки М и М1 проходят две прямые: АА1 и ВВ1. Но это невозможно. Следовательно, наше предположение неверно и, значит, прямые АА1 и ВВ1 не пересекаются.

Теодолиты и тахеометры

Наиболее широко используемыми инструментами для измерения горизонтальных и вертикальных углов в современной геодезии и маркшейдерии являются теодолиты. Основным критерием, по которому разделяют теодолиты на разные типы, считается точность измерений. Из них можно выделить:

  • высокоточные приборы Т-1 (ТБ-1), Т-05, с точностью измерений соответственно 1,0 и 0,5 секунд;
  • точные приборы Т-2 и Т-5, по точности угловых измерений соответственно 2 и 5 секунд;
  • инструменты технической точности серий Т-15, Т-30, с измерениями углов точностью 15 и 30 секунд соответственно.

Числовые величины в маркировках современных теодолитов соответствуют значению, с девяноста пяти процентной вероятностью, среднеквадратической погрешности измерения угла.

Известно, что для определения пространственного положения точек используются измерения углов в вертикальной плоскости или как их называют вертикальных углов. Для этого в угломерах, теодолитах конструктивно устроен вертикальный круг измерений. В последние десятилетия технические усовершенствования и технологическое развитие сказалось и на новых устройствах теодолитов. Появились новые модификации и в зависимости от назначения этих устройств выделяют:

  • маркшейдерские;
  • гироскопические теодолиты;
  • фототеодолиты;
  • электронные теодолиты; .

Построение перпендикулярной прямой

Сейчас мы с вами с помощью циркуля попробуем построить перпендикулярную прямую. Для этого у нас есть точка О и прямая а.

На первом рисунке изображена прямая на которой лежит точка О, а на втором данная точка не лежит на прямой а.

Теперь давайте по отдельности рассмотрим эти оба варианта.

1-й вариант

Вначале мы берем циркуль, ставим его в центр точки О и чертим окружность с произвольным радиусом. Теперь мы видим, что данная окружность пересекает прямую а в двух точках. Пускай это будут точки А и В.

Далее, мы берем и проводим окружности из точек А и В. Радиус этих окружностей будет АВ, а вот точка С будет точкой пересечения этих окружностей. Если вы помните, то в самом начале мы с вами получили точки А и В, когда чертили окружность и брали произвольный радиус.

В итоге мы видим, что искомая перпендикулярная прямая проходит через точки С и О.

Доказательство

Для данного доказательства нас нужно провести отрезки AC и CB. И мы видим, что образовавшиеся треугольники равны: Δ ACO = Δ BCO, это следует из третьего признака равенства треугольников, то есть у нас выходит, что AO = OB, AC = CB, а СО общая по построению. Образовавшиеся углы ∠ COA и ∠ COB равны и оба имеют величину, равную 90 °. Из этого следует, что прямая CO перпендикулярна AB.

Отсюда мы можем сделать вывод, что углы, образованные при пересечении двух прямых являются перпендикулярными в том случае, если хотя бы один из них перпендикулярен, а это значит, что такой угол равен 90 градусам и является прямым.

2-й вариант

А сейчас давайте рассмотрим вариант построения перпендикулярной прямой, где данная точка не лежит на прямой а.

В этом случае мы с помощью циркуля из точки О проводим окружность с таким радиусом, чтобы эта окружность пересекала прямую а. А точки А и В пускай будут точками пересечения этой окружности с данной прямой а.

Далее, мы берем такой же радиус, но проводим окружности, центром которых будут точки A и B. Смотрим на рисунок и видим, что у нас появилась точка О1, которая также является точкой пересечения окружностей и лежит в полуплоскости, но отличной от той, в которой находится точка О.

Следующее, что мы сделаем, так это через точки O и O1проведем прямую. Это и будет та перпендикулярная прямая, которую мы искали.

Доказательство

Припустим, что точкой пересечения прямых OO1 и AB является точка С.
Тогда треугольники AOB и BO1A равны по третьему признаку равенства треугольников и AO = OB = AO1 = O1B, а АВ является общей по построению. Из этого следует, что углы OAС и O1AC равны. Треугольники OAC и O1AC, следуя из первого признака равенства треугольников AO равняется AO1, а по построению, углы OAС и O1AC равны при общей AС. Следовательно, что угол OСA равен углу O1CA, но а так как они смежные, то значит прямые. Поэтому, делаем вывод, что OC является перпендикуляром, который опущенный из точки O на прямую a.

Вот так, только с помощью циркуля и линейки, можно легко построить перпендикулярные прямые

И не важно, где находится точка, через которую должен проходит перпендикуляр, на отрезке или вне этого отрезка, главное в этих случаях верно найти и обозначить первоначальные точки А и В.. Вопросы:

Вопросы:

  1. Какие прямые называются перпендикулярными?
  2. Какой угол между перпендикулярными прямыми?
  3. Чем пользуються для построения перпендикулярных прямых?

ПредметиМатематикаМатематика 7 класс

Определение точки начала

Для определения точки начала можно использовать следующие методы:

  1. Использование уже известной точки на местности, такой как сторона здания, близлежащий выступ или любой другой легко идентифицируемый объект.
  2. Использование геодезической сети, если такая сеть присутствует в данном районе. В этом случае можно использовать уже существующие опорные пункты.
  3. Использование GPS-координат. Современные технологии позволяют достаточно точно определить координаты места, без необходимости полагаться на внешние объекты.

Во всех случаях необходимо обеспечить правильность определения точки начала, чтобы последующие измерения и построения были точными. Если возникают сомнения или неясности, рекомендуется проконсультироваться с опытным специалистом.

Пошаговая инструкция

1й способ. — С помощью «золотого», или «египетского», треугольника. Стороны этого треугольника имеют соотношение сторон 3:4:5, а угол равен строго 90град. Этим качеством широко пользовались древние египтяне и другие пракультуры.

Илл.1. Построение Золотого, или египетского треугольника

  • Изготавливаем три мерки (или веревочных циркуля – веревка на двух гвоздях или колышках) с длинами 3; 4; 5 метров. Древние в качестве единиц измерения часто пользовались способом завязывания узелков с равными расстояниями между ними. Единица длины — «узелок».
  • Вбиваем в точке О колышек, цепляем на него мерку «R3 — 3 узелка».
  • Протягиваем веревку вдоль известной границы – в сторону предполагаемой точки А.
  • В момент натяжения на линии границы – точка А, вбиваем колышек.
  • Затем — снова от точки О, протягиваем мерку R4 – вдоль второй границы. Колышек пока не вбиваем.
  • После этого натягиваем мерку R5 – от А до В.
  • В месте пересечения мерок R2 и R3 вбиваем колышек. – Это искомая точка В – третья вершина золотого треугольника, со сторонами 3;4;5 и с прямым углом в точке О.

2й способ. С помощью циркуля.

Циркуль может быть веревочный или в виде шагомера. См: …простейший землемерный инструмент

Наш циркуль-шагомер имеет шаг в 1 метр.

Илл.2. Циркуль-шагомер

Построение – также по Илл.1.

  • От точки отсчета – точки О – угла соседа, проводим отрезок произвольной длины — но больше, чем радиус циркуля = 1м – в каждую сторону от центра (отрезок АВ).
  • Ставим ногу циркуля в точку О.
  • Проводим окружность с радиусом (шагом циркуля) = 1м. Достаточно провести короткие дуги – сантиметров по 10-20, в местах пересечения с отмеченным отрезком (через точки А и В.). Этим действием мы нашли равноудаленные точки от центра — А и В. Величина удаления от центра здесь не имеет значения. Можно эти точки просто отметить рулеткой.
  • Далее нужно провести дуги с центрами в точках А и В, но несколько (произвольно) большего радиуса, чем R=1м. Можно перенастроить наш циркуль на больший радиус, если он имеет регулируемый шаг. Но для такой небольшой текущей задачи не хотелось бы его «дергать». Или когда регулировки нет. Можно сделать за полминуты веревочный циркуль.
  • Ставим первый гвоздь (или ножку циркуля с радиусом больше, чем 1м) поочередно в точки А и В. И проводим вторым гвоздем — в натянутом состоянии веревки, две дуги — так чтобы они пересеклись друг с дружкой. Можно в двух точках: C и D, но достаточно одной – C. И снова хватит коротких засечек на пересечении в точке С.
  • Проводим прямую (отрезок) через точки С и D.
  • Все! Полученный отрезок, или прямая, — есть точное направление на север :). Простите, — на прямой угол.
  • На рисунке показаны два случая несоответствия границы по участку соседа. На Илл.3а приведен случай, когда забор соседа уходит от нужного направления в ущерб себе. На 3б – он залез на Ваш участок. В ситуации 3а возможно построение двух «направляющих» точек: и C, и D. На 3б же – только С.
  • Поставьте на углу О колышек, а в точке C — временный колышек, и протяните от С шнур до задней границы участка. – Так, чтобы шнур едва касался колышка О. Замерив от точки О – в направлении D, длину стороны по генплану, получите достоверный задний правый угол участка.

Илл.3. Построение прямого угла – от угла соседа, с помощью циркуля-шагомера и веревочного циркуля

Если у Вас есть циркуль-шагомер, то можно и вовсе обойтись без веревочного. Веревочный в предыдущем примере мы применили для проведения дуг большего радиуса, чем у шагомера. Большего потому, что эти дуги должны где-нибудь пересечься. Для того чтобы дуги можно было провести шагомером с тем же радиусом – 1м с гарантией их пересечения, надо чтобы точки А и В находились внутри окружности c R =1м.

Отмерьте тогда эти равноудаленные точки рулеткой — в разные стороны от центра, но обязательно по линии АВ (линии забора соседа). Чем точки А и В будут ближе к центру – тем дальше от него направляющие точки: C и D, и тем точнее измерения. На рисунке это расстояние принято равным около четверти радиуса шагомера = 260мм.

Илл.4. Построение прямого угла с помощью циркуля-шагомера и рулетки

Не менее актуальна эта схема действий и при построении любого прямоугольника, в частности — контура прямоугольного фундамента. Вы получите его идеальным. Его диагонали, конечно, нужно проверить, но разве не уменьшаются усилия? – По сравнению, когда диагонали, углы и стороны контура фундамента двигают туда-сюда, пока углы не сойдутся..

Интересная задача

Есть такая задача:В Заколдованном Лесу било 10 заколдованных источников — номер 1, 2, 3,… 10. Вода каждого источника была неотличима на цвет, вкус и запах от обычной воды, но являлась сильнейшим ядом. Выпивший её был обречён — если только в течение часа после этого не пил воды источника с бОльшим номером (например, от яда источника 3 спасали источники 4-10; яд 10-го источника не оставлял шансов на спсасение). Первые 9 источников были общедоступны, но источник 10 был в пещере Кащея Бессмертного, и доступ к нему имел только Кащей.И вот однажды Иван-Дурак вызвал Кащея на поединок. Условия были простыми: каждый приносит с собой по стакану некоторой жидкости, соперники обмениваются стаканами и выпивают их содержимое. А дальше — справляются, как могут.Кащей был доволен. Ещё бы: он даст Ивану яд номер 10, и Ивана ничто не сможет спасти. А сам он яд, данный Иваном, запьёт водой 10-го источника — и будет спасён.Попробуйте разработать план дуэли для Ивана. Задача — остаться жить самому и прикончить Кащея.Ответ 1. Угробить Кащея. Ему нужно дать не яд, а чистую воду. Он запьёт её своим ядом — и он обречён.Ответ 2. Не угробиться самому. Любой яд, кроме номера 1, может являться и противоядием. Перед тем, как придти на дуэль, нужно выпить яд малого номера. И тогда яд номер 10, полученный от Кащея на дуэли, не убьёт, а спасёт.Вообще, идея-то тривиальная. Не всегда можно взвесить поступок изолированно. Одно и то же действие может оказаться и ядом, и противоядием. Многое зависит от фона. Не буду говорить, что всё — но, несомненно, многое.И когда вы слышите, что кто-то из ваших знакомых совершил Такую-То и Такую-То Гадости, не спешите вешать ярлыки. Уверены ли вы, что это именно гадости? Не может ли быть, что они просто выглядят так? Уверены ли вы, что фон этих действий вам известен?

Как с помощью циркуля и линейки построить угол, зная тангенс этого угла?

Для начала вспомним, что такое тангенс

С помощью циркуля и обычной линейки (без делений) построим две перпендикулярные прямые

Построим угол, тангенс которого равен 2/3.

Отмерим циркулем произвольный отрезок и от точки пересечения отложим вверх два раза, затем влево три раза. Проведем через эти точки луч, как показано на рисунке. Угол построен.

Построим угол, тангенс которого равен корню кубическому из трех.

С помощью калькулятора найдем это число

Округлим до удобного нам значения 1,25 и запишем в виде неправильной дроби 5/4. Аналогично с предыдущим способом с Помощью циркуля
отложим пять одинаковых отрезков вверх и четыре влево. С Помощью линейки
проведем через них луч. Угол построен.

Построим угол, тангенс которого равен Π
.

И все также, как в предыдущих примерах — 19 отрезков вверх и шесть влево, соединили — и угол построен.

Хочу добавить — в связи с тем, что я немного менял значения, в результат построения углов заложилась Маленькая погрешность
, но невооруженным глазом и даже с помощью транспортира она будет незаметна.

Можно легко проверить — берем калькулятор

И насчет правильности построения угла по способу, который я указал — с помощью компьютерной программы строим углы по заданным параметрам, затем строим по моему способу — сравниваем и убеждаемся — кто прав, а кто не прав. — более месяца назад

Как известно, по соотношению сторон прямоугольного треугольника можно найти все эти тригонометрические величины. В частности, тангенс угла определяется как соотношение длины катета (стороны), лежащей напротив данного угла, и стороны, примыкающей к данному углу. Следовательно, порядок действия будет следующий:

1) проводим любую прямую линию;

2) проводим другую линию под прямым углом к ней — для этого циркулем проводим окружность любого радиуса с центром, расположенным на первой прямой, а затем еще одну окружность того же радиуса с центром, расположенным в точке пересечения первой окружности и первой прямой; прямая, проведенная через две точки пересечения данных окружностей, будет перпендикулярна первой;

3) из точки пересечения первой и второй прямой — вершины прямого угла — отмеряем отрезок любой подходящей длины на первой прямой, считаем, что это прилежащий катет;

4) зная соотношение — тангенс, вычисляем длину второго отрезка-катета — противолежащего, (умножаем тангенс на длину первого отрезка), и отмеряем его из той же точки / вершины на второй прямой;

5) соединяем все вершины получившегося прямоугольного треугольника, один из углов которого, со стороной на первой прямой, является искомым.

FEBUS , я понял, кажется, что вы имеете ввиду — при tgA = π угол получается близким к 90 градусов, а если тангенс угла стремится к бесконечности — так вообще, длина линейки для построения такого треугольника тоже должна быть бесконечной. Ну и что, собственно? Длина одного катета будет в 3,14 раз больше, чем длина другого — такой треугольник вполне можно построить указанным методом. Что не так-то? — более месяца назад

Тангенс это отношение катета, противолежащего углу к катету, прилежащему к углу.

Тангенс надо представить в виде дроби числителя(это величина противолежащего катета) и знаменателя (величина прилежащего катета)

Чертим прямую и проводим к ней перпендикуляр точка пересечения это вершина прямого угла (точка А)

Из точки пересечения (вершины прямого угла — точка А) на прямой надо отложить отрезок, равный величине противолежащего катета (точка В).

На прямой надо отложить отрезок, равный величине прилежащего катета (точка С)

Соединяем точки В и С получился треугольник АВС

Тангенс угла АСВ равен известному тангенсу.

Представьте в виде дроби tgA = π. — более месяца назад

Чтобы построить угол с заданным значением тангенса угла, циркуль не нужен, достаточно одной линейки.

В системе координат откладываем по оси абсцисс (Х) единицу, по оси ординат (У) откладывает значение тангенса угла. Точку с такими координатами соединяем с началом системы координат. Угол между осью Х и построенной линией — искомый угол.

Тангенс = отношение противоположного катета к прилежащему, т. е. tg (a) = У/Х.

У меня Х=1, значит tg (a) = У. — более месяца назад

Понравилась статья? Поделиться с друзьями:
ГЕО-АС
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: