Механизм превращения солнечного излучения в энергию
Фотосинтез – один из главных процессов, отвечающих за превращение солнечного излучения в энергию питания для растений. Растения поглощают энергию излучения с помощью хлорофилла – зеленого пигмента, содержащегося в их листьях. При этом происходит превращение световой энергии в химическую энергию, которая сохраняется в виде органических веществ, таких как глюкоза. Таким образом, растения используют энергию солнечного излучения для собственного роста и развития, а также для производства кислорода в процессе фотосинтеза.
Пищевая цепочка – механизм передачи солнечной энергии от одного организма к другому. Растения, получив энергию от солнечного излучения в процессе фотосинтеза, становятся источником пищи для других животных. Они могут прямо или косвенно получать энергию от солнца, потребляя растительную пищу. Когда животные поглощают энергию солнечного излучения, сохраненную в органических веществах, они используют ее для своего собственного роста, размножения и поддержания жизнедеятельности.
Другие процессы – помимо фотосинтеза и пищевой цепочки, солнечное излучение также участвует в других биохимических реакциях в живых организмах. Например, оно может стимулировать синтез витамина D, регулировать циркадные ритмы и влиять на процессы роста и развития у растений и животных.
Таким образом, механизм превращения солнечного излучения в энергию состоит из нескольких основных процессов, таких как фотосинтез и пищевая цепочка. Как результат, солнечная энергия питает биосферу Земли, поддерживая жизнь различных организмов на планете.
Солнечная энергия — первичный источник энергии для биосферы
Солнечная энергия достигает поверхности Земли в виде солнечного излучения, которое содержит энергию в виде электромагнитных волн. Она освещает планету и поглощается растениями, животными и другими организмами, обеспечивая им энергию для жизнедеятельности.
Растения используют солнечную энергию в процессе фотосинтеза для превращения света в химическую энергию. В результате этого процесса, растения производят органические вещества и кислород, которые являются основой пищевой цепи.
Животные, в свою очередь, получают энергию, питаясь растениями и другими живыми организмами. Они преобразуют энергию химических веществ в другие формы энергии, необходимые для роста, размножения и поддержания жизнедеятельности.
Солнечная энергия также играет важную роль в климатических процессах на Земле. Она нагревает атмосферу, создавая циркуляцию воздуха, ветры и течения океана. Это влияет на температуру, влажность и погодные условия на планете.
Таким образом, солнечная энергия является необходимым источником энергии для всех живых организмов в биосфере. Она обеспечивает растения и животных энергией для роста, размножения и поддержания жизнедеятельности, влияет на климатические процессы и является основой пищевой цепи.
Круговорот ртути
Этот редко встречаемый химический элемент очень токсичен. Сильной токсичностью обладают и соединения ртути. В природе ртуть рассеяна в земной коре и очень редко встречается в таких минералах, как киноварь, где она содержится в концентрированном виде. Ртуть участвует в круговороте веществ, мигрируя в газообразном состоянии и в водных растворах.
В атмосферу ртуть поступает из гидросферы при испарении, вместе с вулканическими газами и газами из термальных источников. Часть газообразной ртути переходит в твердую фазу и удаляется из воздушной среды. Выпавшая вместе с атмосферными осадками ртуть поглощается почвенными растворами и глинистыми породами. Ртуть в небольших количествах содержится в нефти и каменном угле (до 1 мг/кг). В водной массе океанов ее количество составляет около 1,6 млрд. т., в донных осадках заключено около 500 млрд. т., а в планктонных организмах находится до 2 млн. т. ртути и ее соединений. Речными водами ежегодно с суши выносится около 40 тыс. т. ртути, что на порядок меньше, чем поступает в атмосферу при испарении.
В результате усилившихся техногенных выбросов в атмосферу и гидросферу ртуть из естественного компонента природной среды, участвующего во всех круговоротах, превратилась в весьма опасный компонент для здоровья человека и живого вещества. Ртуть применяют в металлургической, химической, электротехнической, электронной, целлюлозно-бумажной и фармацевтической промышленности, используют для производства взрывчатых веществ, люминесцентных ламп, лаков и красок. Промышленные стоки и атмосферные выбросы, горно-обогатительные фабрики при ртутных рудниках, теплоэнергетические установки, использующие минеральное топливо, являются главными источниками загрязнения биосферы этим токсичным компонентом. Кроме того, ртуть входит в состав некоторых пестицидов, которые используют в сельском хозяйстве для протравливания семян и защиты их от вредителей. В организм человека ртуть и ее соединения поступают вместе с пищей.
Круговорот свинца
Несмотря на то что свинца в земной коре содержится всего 0,0016%, он присутствует во всех компонентах природной среды. Важнейшим в круговороте свинца является его атмосферно-гидросферный перенос. Находящийся в атмосфере свинец вместе с пылью осаждается атмосферными осадками и начинает концентрироваться в почвах. Растения получают свинец из почв, природных вод и атмосферных выпадений, а животные — при потреблении растений и воды. В организм человека свинец попадает вместе с пищей, водой и пылью.
Основными источниками загрязнения биосферы свинцом являются разнообразные двигатели, выхлопные газы которых содержат тетраэтилсвинец, теплоэнергетические установки, сжигающие каменный уголь, горнодобывающая, металлургическая и химическая промышленность. Значительное количество свинца вносится в почву сточными водами.
У жителей промышленно развитых стран содержание свинца в организме в несколько раз больше, чем у жителей аграрных стран, а у горожан выше, чем у сельских жителей. Увеличение концентрации свинца в природных средах приводит к необратимым процессам в костях и печени людей.
Биосфера — это область распространения живого вещества. В ее истории имеются важнейшие рубежи, свидетельствующие о влиянии на ее развитие и эволюцию различных геосферных факторов. Живое вещество обладает весьма своеобразными экологическими функциями
Важное геоэкологическое значение имеют энергетическая, газовая, почвенно-элювиальная, водоочистная, водорегулирующая, концентрационная, транспортная и деструктивная функции. Биосфера многолика в результате исключительно огромного таксономического разнообразия
Каждый организм или группа организмов в силу своих физиологических особенностей и условий существования способны служить инструментом индикации загрязненности природной среды. В биосфере существует круговорот веществ, которому предшествует геологический круговорот, подготовляющий вещества для жизнедеятельности организмов. Более низкий уровень биосферного круговорота составляет биологический круговорот. В природе существуют круговороты углерода, азота, фосфора, серы, ртути, свинца и других химических элементов и соединений.
Круговорот кислорода
В функционировании биосферы кислород играет исключительно важную роль в процессах обмена веществ и дыхании живых организмов. Уменьшение количества кислорода в атмосфере в результате процессов дыхания, сжигания топлива и гниения компенсируется кислородом, выделяемым растениями при фотосинтезе.
Кислород образовывался в первичной атмосфере Земли при ее остывании. В силу своей высокой реакционной способности он переходил из газообразного состояния в состав различных неорганических соединений (карбонатов, сульфатов, оксидов железа и др.). Сегодняшняя кислородсодержащая атмосфера планеты образовалась исключительно за счет осуществляемого живыми организмами фотосинтеза. Содержание кислорода в атмосфере повышалось до нынешних значений в течение длительного времени. Поддержание его количества на постоянном уровне в настоящее время возможно только благодаря фотосинтезирующим организмам.
К сожалению, в последние десятилетия деятельность человека, приводящая к вырубке лесов, эрозии почв, снижает интенсивность фотосинтеза. А это, в свою очередь, нарушает естественный ход круговорота кислорода на значительных территориях Земли.
Небольшая часть кислорода атмосферы участвует в процессах образования и разрушения озонового экрана при действии ультрафиолетового излучения Солнца.
Зависимость внешней биосферы от солнечной энергии
Солнечная энергия играет ключевую роль в жизни на Земле. Биосфера, внешняя оболочка планеты, зависит от солнечного излучения для получения энергии, необходимой для поддержания жизни и метаболических процессов.
Солнечная энергия является основным источником питательных и тепловых ресурсов для растений, которые в свою очередь являются первичными продуцентами в биосфере. При фотосинтезе растения преобразуют солнечную энергию в химическую, хранящуюся в органических соединениях.
Энергия, запасенная в органических веществах растений, передается по пищевым цепям и используется другими организмами, такими как животные и микроорганизмы. Таким образом, солнечная энергия является основным источником энергии для всего биосферного сообщества.
Кроме того, солнечная энергия также регулирует климатические процессы на Земле, влияя на циркуляцию воздуха, океанские течения и формирование погодных условий. Отклонения в солнечной активности могут иметь значительное влияние на биосферу, вызывая изменения климата и экосистем.
Таким образом, солнечная энергия является основным источником энергии для биосферы, поддерживая жизнь и обеспечивая функционирование всех организмов, а также влияя на климатические процессы на Земле. Эта зависимость делает солнечную энергию незаменимым ресурсом для поддержания баланса и устойчивости в биосфере.
Круговорот воды
Вода — основной компонент биосферы. Она является средой для растворения практически всех элементов при осуществлении круговорота. Большая часть биосферной воды представлена жидкой водой и водой вечных льдов (более 99 % всех запасов воды в биосфере). Незначительная часть воды находится в газообразном состоянии — это атмосферные водяные пары. Биосферный круговорот воды основывается на том, что ее испарение с поверх ности Земли компенсируется выпадением осадков. Попадая на поверхность суши в виде осадков, вода способствует разрушению горных пород. Это делает составляющие их минералы доступными для живых организмов. Именно испарение воды с поверхности планеты обусловливает ее геологический круговорот. На него расходуется около половины падающей солнечной энергии. Испарение воды с поверхности морей и океанов происходит с большей скоростью, чем возвращение ее с осадками. Эта разница компенсируется за счет поверхностного и глубинного стоков благодаря тому, что на континентах осадки преобладают над испарением.
Увеличение интенсивности испарения воды на суше во многом обусловлено жизнедеятельностью растений. Растения извлекают воду из почвы и активно транспирируют ее в атмосферу. Часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород выделяется в атмосферу.
Животные используют воду для поддержания осмотического и солевого равновесия в организме и выделяют ее во внешнюю среду вместе с продуктами обмена веществ.
Свойства биосферы по Вернадскому
По определению академика Вернадского, вся совокупность живых организмов нашей планеты представляет собой живое вещество. Ее основные характеристики:
- суммарная биомасса;
- химический состав;
- энергия.
Живое вещество обладает энергией, то есть способно размножаться и распространяться. От наличия вещества и энергии зависят реакции жизнедеятельности живых организмов. Исходя из этого, главное свойство биосферы заключается в постоянном обмене, в котором участвуют организмы и окружающая среда. Она является источником всех необходимых веществ для организмов. Окружающая среда пополняется продуктами обмена веществ. Данные процессы определяют функционирование биосферы в виде целостной системы.
Примечание
Процесс деятельности продуцентов сопровождается накоплением солнечной световой энергии, которая затем трансформируется в энергию химических связей. Суммарная биомасса биосферы в целом определяется именно суммарной первичной продукцией автотрофов.
Свойства биосферы определяют специфику это достаточно сложной системы. Основными из них являются:
- Централизованность. Живые организмы — это центральное звено биосферы, что всесторонне подтверждено В.И. Вернадским. Несмотря на то, что недопустимо применять понятие антропоцентризма в исследовании живого вещества, многие современные ученые считают центром биосферы один вид — человека.
- Открытость. От наличия энергии, включая солнечную радиацию, зависит существование биосферы.
- Саморегулируемость и организованность. Биосфера обладает рядом механизмов, которые обеспечивают ее способность противодействовать возникающим возмущениям, стабилизировать первоначальное состояние или способность к гомеостазу.
- Разнообразие заключается в наличии разных сред жизни, которые составляют биосферу, включая водную, почвенную, наземно-воздушную и другие среды, разнообразных природных зон, геохимических областей и большого количества элементарных экосистем, которым присуще видовое разнообразие. Предположительно, в наше время на планете Земля обитают свыше 10 миллионов видов животного мира и более 1 миллиона видов царства растений и грибов. Разнообразие является условием устойчивости какой-либо экосистемы, а также биосферы в целом.
- Механизмы, которые обеспечивают круговорот веществ и зависимую от него неисчерпаемость каких-либо химических элементов и их соединений.
В процессе эволюции биосферы наблюдается усложнение структуры биологических сообществ, увеличивается видовое разнообразие, совершенствуются механизмы приспособляемости живых организмов. Вместе с эволюцией повышается эффективность преобразовании энергии и вещества биологическими системами в виде:
- организмов;
- популяций;
- сообществ.
Вершина эволюции живого вещества на планете — человек. Он относится к биологическому виду, который с помощью множества эволюционных трансформаций приобрел сознание, являющееся совершенной формой отражения окружающей среды, и способность к изготовлению и применению в процессе жизнедеятельности орудий труда. Благодаря орудиям труда, человечество обустроило среду искусственного происхождения для жизни в виде поселений, жилищ, одежды, продуктов питания, машин и многого другого. С этого момента эволюция биосферы перешла на новый уровень, на котором мощная движущая сила определяется человеческим фактором.
Кислород
Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.
Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.
И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.
Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.
Если результатом фотосинтеза является кислород, то его сырьем – углерод.
Биологический круговорот и превращение энергии в биосфере, роль в нем организмов разных царств
Наша планета окружена тремя оболочками. Круговорот веществ – это многократное участие веществ в процессах, протекающих в различных оболочках Земли.
Этот процесс — явление непрерывное, циклическое. Круговорот веществ сопровождается превращением, потерями, закономерными перераспределениями органических и неорганических веществ.
В процессе круговорота образуется живое вещество из неорганических соединений, впоследствии органика распадается на неорганические компоненты.
Круговорот веществ в биосфере происходит при участии живых организмов, которые преобразуют и передают энергию по пищевой цепочке. Биологический круговорот осуществляется по трофическим цепям (сетям) экосистемы и подчиняется закону Линдемана. В этом круговороте участие принимают все химические элементы, из них выделяют самые необходимые:
- Углерод. Основным его источником является углекислота. Именно она необходима для его переработки в органическое вещество. В процессе фотосинтеза, поглощенная зелеными растениями углекислота перерабатывается в сахар, а благодаря другим процессам биосинтеза преобразуется в липиды, протеиды и тому подобное. Именно эти вещества являются источником питания для растений.
- Азот. В атмосфере содержится около 78% азота, однако он находится в том состоянии, в котором не может использоваться большинством живых организмов. Для того чтобы, организмы смогли им воспользоваться, азот должен быть зафиксирован в виде химических соединений. Фиксация протекает при вулканической активности, грозовых разрядах или же сгорании метеоритов, но основная фиксация происходит за счет микроорганизмов, обитающих на корнях высших растений, реже на листьях.
- Кислород. Главная составляющая живой природы. В тканях живых организмов содержится около 62,8% кислорода и 19%углерода. Круговорот кислорода усложняется тем фактором, что он может образовывать большое количество различных химических соединений. При определенном содержании кислорода, он может быть губителен для клеток аэробных организмов. Луи Пастер доказал, что ни один анаэробный организм не выживет при концентрации кислорода превышающей 1%. Круговорот этого вещества происходит между живыми организмами и атмосферой. Процесс продуцирования и выделения кислорода растениями при фотосинтезе противоположен процессу потребления и выделения углекислого газа при дыхании.
Скорость биогеохимических процессов
В природе все круговороты веществ протекают с разной скоростью. На нее влияет множество факторов. Например, форма нахождения элемента, активность его взаимодействия, роль в метаболических процессах и многое другое.
Круговорот кислорода занимает примерно 2 тыс. лет. За этот срок весь газ из атмосферы проходит через живое вещество. Скорость круговорота воды может достигать 2 млн лет, причем время обновления сильно зависит от ее местонахождения (грунт, ледники или атмосфера). Еще больше времени занимают циклы более редких элементов. Например, круговорот фосфора занимает многие миллионы лет.
Влияние геотермальной энергии на биосферу
Во-первых, геотермальная энергия является источником тепла для многих экосистем на Земле. Она позволяет растениям и животным выживать в условиях неблагоприятных климатических условий, таких как холодные и засушливые регионы. Геотермальные источники обеспечивают постоянную температуру и влажность, что способствует росту растений и обитанию различных видов животных.
Также геотермальная энергия является источником электричества. Геотермальные электростанции используются для генерации энергии, которая питает не только близлежащие населенные пункты, но и соседние регионы. Это значительно снижает зависимость от ископаемых топлив и вредных выбросов в атмосферу.
Кроме того, геотермальная энергия оказывает положительное влияние на биоразнообразие. Тепло воды геотермальных источников создает особые условия для обитаемых областей, где процветают уникальные формы жизни, включая термофильные бактерии, ракообразных и рыб.
Однако, несмотря на все пользы геотермальной энергии, ее разработка и использование могут повлечь негативные последствия для биосферы. Неконтролируемая добыча геотермальной энергии может вызвать затопление биологических зон соленой водой и нарушение экосистем. Поэтому необходимо бережно использовать и разрабатывать этот тип энергии, чтобы минимизировать отрицательное воздействие на биосферу.
История открытия
Изучение глобальных природных циклов началось в первой половине XIX века. В 1809 году знаменитый французский естествоиспытатель Ламарк кратко описал концепцию биосферы.
В середине XIX столетия известные химики Буссенго и Либих сформулировали основные принципы круговорота веществ. В 1875 году австрийский геолог Зюсс впервые ввел в научный обиход термин «биосфера».
Основоположником учения о биосфере и биогеохимических циклах считается выдающийся российский ученый Владимир Вернадский. Он первый указал на неразрывную связь между живой и неживой природой и оценил ключевую роль организмов в преобразовании облика планеты.
Ученый предположил, что биологический оборот вещества – это главный фактор миграции химических элементов.
Круговорот углерода
Углерод как химический элемент присутствует в атмосфере в составе углекислого газа. Это и обусловливает обязательное участие живых организмов в круговороте этого элемента на планете Земля. Основной путь, по которому углерод из неорганических соединений переходит в состав органических веществ, где он является обязательным химическим элементом, — это процесс фотосинтеза. Часть углерода выделяется в атмосферу в составе углекислого газа при дыхании живых организмов и при разложении бактериями мертвого органического вещества. Усвоенный растениями углерод потребляется животными. Кроме того, коралловые полипы, моллюски используют соединения углерода для построения скелетных образований и раковин. После их отмирания и оседания на дне формируются отложения известняков. Таким образом, углерод может исключаться из круговорота. Выведение углерода из круговорота на длительный срок достигается путем формирования полезных ископаемых: каменного угля, нефти, торфа.
На протяжении существования нашей планеты выведенный из круговорота углерод компенсировался углекислым газом, поступающим в атмосферу при вулканических извержениях и в ходе других естественных процессов. В настоящее время к природным процессам пополнения углерода в атмосфере добавилось значительное антропогенное воздействие. Например, при сжигании углеводородного топлива. Это нарушает отрегулированный веками круговорот углерода на Земле.
Увеличение концентрации углекислого газа за столетие всего на 0,01 % привело к заметному проявлению парникового эффекта. Среднегодовая температура на планете повысилась на 0,5 °С, а уровень Мирового океана поднялся почти на 15 см. По прогнозам ученых, если среднегодовая температура увеличится еще на 3-4 °С, начнется таяние вечных льдов. При этом уровень Мирового океана поднимется на 50-60 см, что приведет к затоплению значительной части суши. Это расценивается как глобальная экологическая катастрофа, ведь на этих территориях проживает около 40 % населения Земли.
Круговорот серы
Сера имеет важное биологическое значение, так как она входит в состав аминокислот, белков и других сложных органических соединений. В пересчете на сухое вещество в наземных растениях содержание серы составляет 0,3%, у наземных животных — 0,5, в морских растениях — 1,2, у морских животных — до 2%
В большом, геологическом, круговороте сера переносится с океана на материки атмосферными осадками и возвращается с речным стоком обратно в Мировой океан. Одновременно ее запасы пополняются за счет вулканической деятельности и при процессах выветривания. Вулканы выбрасывают серу в виде триоксида (серного ангидрида SO3), диоксида (сернистого газа SO2), сероводорода Н2S и элементарной серы. В литосфере имеются в большом количестве сульфиды различных металлов: железа, цинка, свинца, меди и др. В биосфере сульфидная сера с участием многочисленных микроорганизмов окисляется до сульфатной серы SO4-2, которая находится в почве и водоемах. В малом круговороте сульфаты поглощаются растениями. Растительноядные животные получают необходимую для жизнедеятельности серу. В результате сложных превращений и видоизменений при разрушении остатков организмов, растительного опада сера попадает в почвенные воды и в илы водоемов суши, морей и океанов. При разрушении белков с участием микроорганизмов образуется сероводород, который в дальнейшем окисляется или до элементарной серы, или до сульфатов. В первом случае формируются залежи чистой серы, а во втором — залежи гипса. При разрушении последних во время добычи или выветривания сера вновь вовлекается в круговорот.
Сероводородное заражение вод Черного моря — это результат жизнедеятельности серо-разлагающих бактерий в анаэробных условиях. Сероводород нередко возникает в пресноводных водоемах, загрязненных промышленными стоками. На заключительном этапе геологического круговорота сера выпадает в осадок в анаэробных условиях в присутствии железа и других металлов и медленно накапливается в виде конкреций или тонкораспыленного вещества в земных недрах.
Промышленное загрязнение приводит к нарушению круговорота серы, так же как и других вышеперечисленных элементов, участвующих в других круговоротах. Дополнительным поставщиком серы в большой круговорот являются теплоэнергетические установки, которые при сжигании минерального топлива выбрасывают сернистый газ.
Атмосфера Земли способна самоочищаться от сернистого ангидрида при выпадении атмосферных осадков: он преобразуется газовыми выделениями растительности или осаждается в форме сульфатных аэрозолей.
Экологическая опасность сернистого ангидрида заключается в том, что при фотохимическом окислении в присутствии диоксида азота и углеводородов сначала образуется серный ангидрид SO3, который соединяясь с водяными парами, превращается в аэрозоли серной кислоты Н2SO4. Продолжительность всего цикла от момента естественных или техногенных выбросов SO2 до удаления из атмосферы паров серной кислоты составляет до 14 суток. С воздушными потоками аэрозоли серной кислоты разносятся на значительные расстояния от источника выброса и выпадают в виде кислотных дождей. Об этом подробнее изложено в разделах, касающих асидификации атмосферы и гидросферы.
Смысл
Круговорот веществ – это повторяющееся участие одних и тех же веществ в процессах, происходящих в литосфере, гидросфере и атмосфере.
Выделяют два типа круговорота веществ:
- геологический (большой круговорот);
- биологический (малый круговорот).
Движущей силой геологического круговорота веществ являются внешние (солнечная радиация, гравитация) и внутренние (энергия недр Земли, температура, давление) геологические процессы, биологического – деятельность живых существ.
Большой круговорот происходит без участия живых организмов. Под действием внешних и внутренних факторов формируется и сглаживается рельеф. В результате землетрясений, выветривания, извержения вулканов, движения земной коры образуются долины, горы, реки, холмы, формируются геологические слои.
Рис. 1. Геологический круговорот.
Биологический круговорот веществ в биосфере происходит при участии живых организмов, которые преобразуют и передают энергию по пищевой цепочке. Устойчивая система взаимодействия живого (биотического) и неживого (абиотического) веществ на определенной территории называется биогеоценозом.
ТОП-3 статьи
которые читают вместе с этой
Чтобы происходил круговорот веществ, необходимо выполнение нескольких условий:
- наличие примерно 40 химических элементов;
- присутствие солнечной энергии;
- взаимодействие живых организмов.
Рис. 2. Биологический круговорот.
У цикла веществ нет определённой отправной точки. Процесс непрерывный и одна стадия неизменно перетекает в другую. Можно начать рассматривать цикл из любой точки, суть останется прежней.
Общий круговорот веществ включает следующие процессы:
- фотосинтез;
- метаболизм;
- разложение.
Растения, являющиеся продуцентами в пищевой цепочке, преобразуют солнечную энергию в органические вещества, которые поступают с пищей в организм потребителей, то есть консументов, которыми могут быть животные,некоторые грибы и бактерии – . После смерти происходит разложение растений и животных с помощью редуцентов: – бактерий, грибов, червей.
Рис. 3. Пищевая цепочка.
Азот
Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами – это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.
Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.
Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.
Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.
И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.
Содержание азота в различных веществах сопоставляют с содержанием там углерода. Оборотные циклы этих двух элементов крепко связаны.
Типы цикла серы
Есть два основных вида цикла серы, а именно;
1 . Цикл газообразной серы
- В результате бактериального выброса (H2S), сжигания ископаемого топлива (SO2), переносимых ветром морских солей (SO 2-4) и вулканических выбросов сера попадает в атмосферу (H2S, SO2, SO2-4).
- Большая часть серы, существующей в виде SO2 или H2S, превращается в SO3, который растворяется в каплях воды с образованием серной кислоты.
- Из-за использования ископаемого топлива круговорот серы перегружен.
- В результате SO2, выбрасываемый в атмосферу, составляет значительную часть общего переноса серы в глобальном масштабе. Этот более высокий уровень серы превращается в серную кислоту в дождевой воде, что приводит к негативным экологическим последствиям.
Цикл газообразной серы
2. Цикл осадочной серы
- В осадочной фазе выветривание и деградация неорганических и органических отложений высвобождает серу.
- Ион SO2-4 переносит серу в наземные и водные среды обитания. После поглощения из почвы растениями и микробами ион сульфата восстанавливается и в конечном итоге интегрируется в виде сульфгидрильной группы (-SH) в белки. ТАК
- Бактерии Desulfovibrio на дне океана преобразуют некоторые сульфаты прямо в сульфиды, H2S или элементарную S в анаэробных условиях.
- Этот сероводород улетучивается в атмосферу и восполняет потери серы в результате осадков.
- Бактерии рода Thiobacillus окисляют H2S с помощью O2 с образованием сульфатов. Сера в избытке смешивается с водой, вызывая кислотные дожди.
Значение и суть циклов
Биогеохимический цикл – это сложный комплекс перемещения различных веществ в биосфере и других геологических оболочках. Такие циклы обеспечивают постоянство биосферы, дают возможность для ее саморегуляции.
Любой подобный цикл не замкнут полностью – обратимость основных химических элементов составляет примерно 95%. Несбалансированный круговорот веществ – одна основных особенностей подобных циклов, которая имеет планетарное значение.
Солнце – главный источник энергии, обеспечивающий круговорот веществ. Это основная движущая сила биогеохимических циклов.
Большой круговорот перераспределяет элементы между биосферой и глубокими слоями планеты. Он связан с вулканической активностью, перемещением огромных воздушных и водных масс, процессами разрушения пород.
Важнейшим фактором, влияющим на перемещение веществ и превращение энергии, являются живые организмы.
Растения-автотрофы, используя энергию фотосинтеза, превращают неорганические соединения в органические, которые затем используют консументы и деструкторы. Биологический круговорот приводит к перемещению и перераспределению огромного количества химических веществ.
За миллиарды лет эволюции живые организмы существенно изменили облик планеты. Они насытили атмосферу кислородом и азотом, создали огромные осадочные отложения, изменили ландшафты, образовали почву.
Дыхание растений и животных
Растения получают энергию с помощью фотосинтеза. Во время фотосинтеза, растения используют энергию солнечного света для превращения углекислого газа и воды в глюкозу и кислород. Глюкоза служит основным источником энергии для растения.
Животные же получают энергию путем окисления органических веществ, как правило, глюкозы. Полученная энергия необходима для обеспечения работы всех органов и систем животного организма.
Таким образом, дыхание растений и животных является важным механизмом, позволяющим им получать необходимую энергию для поддержания жизненных процессов в биосфере.