Как химические элементы путешествуют по биосфере: понимаем круговорот веществ в природе

Экология

Определение фотосинтеза

Фотосинтез – это процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света происходит образование органических веществ из неорганических. В процессе фотосинтеза растение поглощает углекислый газ и воду, одновременно подвергаясь биосинтезу для синтеза органических веществ и выделения кислорода. В тканях, содержащих хлоропласты, особенно в листьях, происходит фотосинтез, составляющий большую часть фотосинтеза, и большая часть фотосинтетических процессов происходит в этой среде. Хлоренхима или мезофилл — названия этих тканей.

Схема фотосинтеза

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» – угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Круговорот воды

Большая часть биосферной воды представлена водами Мирового океана и водой вечных льдов. Более 99 % всех запасов воды в биосфере находится в твердом состоянии. Незначительная часть воды находится в газообразном состоянии — это атмосферные водяные пары. На испарение воды с поверхности океанов и суши затрачивается около половины всей поступающей на Землю солнечной энергии. После испарения вода потоками воздуха переносится на различные расстояния. Бóльшая ее часть в виде осадков выпадает в океан, откуда интенсивно испаряется, меньшая — на сушу. Излишки стекаются в реки, озера, а из них — в Мировой океан. Выпавшая на поверхность суши вода способствует разрушению горных пород, размывает верхний слой почвы и возвращается вместе с растворенными и взвешенными в ней веществами в реки, моря и океаны. Таким образом, вода переносит огромное количество неорганических и органических соединений.

В круговороте воды важную роль играют живые организмы. Растения извлекают воду из почвы и испаряют ее в атмосферу. Масса испаряемой при этом воды может быть весьма значительна. Так, с 1 га леса испаряется 20—50 т воды в сутки.

!  Это интересно

Чтобы произвести 10 кг биомассы, большинство растений потребляют примерно 1000 л воды. Из этой, пропущенной через корни воды, примерно991 л идет на испарение с поверхности листьев, что необходимо растению в первую очередь для охлаждения. Из оставшихся около 9 л воды 7,5 л остается в тканях растений в виде химически свободной воды, и только 1,5 л используется в процессе фотосинтеза.

Животные организмы также активно участвуют в круговороте воды. Они потребляют воду для поддержания процессов жизнедеятельности и выделяют ее с продуктами обмена веществ.

!  Это интересно

Недостаток воды животное ощущает чрезвычайно остро. Так, потеря организмом 10 % воды сопровождается ослаблением сердечной деятельности, повышением температуры тела, снижением аппетита и секреции желудочного сока, возбуждением нервной системы, мышечной дрожью, сухостью и желтушностью слизистых оболочек. При потере позвоночным животным 20 % воды наступает смерть.

компоненты

Глобальный углеродный цикл можно лучше понять, изучив два более простых цикла, которые взаимодействуют друг с другом: короткий цикл и длинный цикл.

Короткометражный фильм посвящен быстрому обмену углерода, который переживают живые существа. В то время как длинный цикл происходит в течение миллионов лет и включает обмен углерода между внутренней частью и поверхностью Земли..

-Быстрый цикл

Быстрый цикл углерода также известен как биологический цикл, потому что он основан на обмене углерода, который происходит между живыми организмами с атмосферой, океанами и почвой..

Атмосферный углерод присутствует в основном в виде диоксида углерода. Этот газ реагирует с молекулами воды в океанах с образованием бикарбонат-иона. Чем выше концентрация углекислого газа в атмосфере, тем больше образование бикарбоната. Этот процесс помогает регулировать СО2 в атмосфере.

Углерод в виде диоксида углерода проникает во все трофические сети, как наземные, так и водные, через фотосинтезирующие организмы, такие как водоросли и растения. В свою очередь, гетеротрофные организмы получают углерод, питаясь автотрофными организмами..

Часть органического углерода возвращается в атмосферу посредством разложения органического вещества (осуществляется бактериями и грибами) и клеточного дыхания (у растений и грибов). Во время дыхания клетки используют энергию, запасенную в углеродсодержащих молекулах (таких как сахара), для производства энергии и СО2.

Другая часть органического углерода превращается в отложения и не возвращается в атмосферу. Углерод, хранящийся в осадках морской биомассы на дне моря (когда организмы умирают), разлагается и СО2 растворяется в глубокой воде. Это CO2 навсегда удален из атмосферы.

Точно так же часть углерода, хранящегося в деревьях, камышах и других лесных растениях, медленно разлагается в болотах, болотах и ​​водно-болотных угодьях в анаэробных условиях и с низкой микробной активностью..

Этот процесс производит торф, губчатую и легкую массу, богатую углеродом, который используется в качестве топлива и в качестве органического удобрения. Примерно треть всего земного органического углерода составляет торф.

-Медленный цикл

Медленный цикл углерода включает обмен углерода между породами литосферы и поверхностной системой Земли: океанами, атмосферой, биосферой и почвой. Этот цикл является основным регулятором концентрации углекислого газа в атмосфере в геологическом масштабе..

Неорганический углерод

Растворенный в атмосфере углекислый газ в сочетании с водой образует углекислоту. Это реагирует с кальцием и магнием, присутствующим в земной коре, с образованием карбонатов.

Из-за эрозионного воздействия дождя и ветра карбонаты достигают океанов, где накапливается дно моря. Карбонаты также могут усваиваться организмами, которые в конечном итоге погибают и осаждаются на морском дне. Эти отложения накапливаются в течение тысячелетий и образуют известняковые породы..

Осадочные породы морского дна поглощаются в мантию Земли путем субдукции (процесс, который включает погружение океанической зоны тектонической плиты под край другой плиты).

В литосфере осадочные породы подвергаются высоким давлениям и температурам и, как следствие, плавятся и вступают в химическую реакцию с другими минералами, выделяя СО2. Выброшенный таким образом диоксид углерода возвращается в атмосферу в результате извержений вулканов..

Неорганический углерод

Другим важным компонентом этого геологического цикла является органический углерод. Это происходит из биомассы, захороненной в анаэробных условиях и при высоком давлении и температуре. Этот процесс привел к образованию ископаемых веществ с высоким содержанием энергии, таких как уголь, нефть или природный газ..

Во время возникновения промышленной революции, в 19 веке, было обнаружено использование ископаемого органического углерода в качестве источника энергии. С двадцатого века наблюдается постоянное увеличение использования этих ископаемых видов топлива, что привело к выбросу в атмосферу большого количества углерода, накопленного в земле в течение тысячелетий в течение нескольких десятилетий..

Фотосинтез

Из углекислого газа и воды в зеленых листьях на свету образуются органические вещества, то есть протекает процесс фотосинтеза.

Впервые процесс фотосинтеза был открыт английским химиком Джозефом Пристли в 1771 году.

В дальнейшем исследованию этого сложного явления, происходящего в листьях, посвятил свою жизнь русский ученый К.А.Тимирязев. Он изучал важнейшую роль хлорофилла, а также солнечного света при формировании органических веществ.

Фотосинтез очень сложный и многоступенчатый процесс, который происходит в зеленых частях растений. Зеленый цвет придает хлорофилл, в котором и осуществляется протекание фотосинтеза.

Можно выделить две фазы фотосинтеза:

  1. Световая фаза фотосинтеза, как видно из названия, осуществляется в светлое время.Энергия солнца достигает молекулы хлорофилла, и она активизируется, воздействуя на воду. Происходит распад молекулы воды и образование кислорода, который выделяется в воздушное пространство. В этой же фазе образуется энергия, нужная для последующего протекания фотосинтеза в растении.
  2. Темновая фаза очень сложна и может протекать без участия света, однако он участвует в ее регуляции. Веществами, обеспечивающим протекание фотосинтеза в клетках растений является углекислый газ, а также вода.Они принимают участие в различных химических реакциях, способствующих образованию крахмала.

Для нормального протекания процесса фотосинтеза необходимы определенные условия.

  1. Важным условием протекания фотосинтеза является достаточный объем солнечного света. Рассмотрим это на примере опыта. Поместим какое-либо комнатное растение в темноту и продержим дня два, затем вынем его. Часть листа закроем от света двумя пластинками так, чтобы к этому месту свет не проникал. Затем выставим растение на освещенное место. В конце дня срежем лист, снимем с него пластину. Положим лист в спиртовой раствор и прокипятим. Горячий спиртовой раствор способствует растворению хлорофилла, лист становится бесцветным. Зальем бесцветный лист йодом. Освещенная частичка листа приобретает синий цвет – здесь есть крахмал. Закрытая часть останется желтой — крахмала в ней нет.

Из опыта видно, что все реакции фотосинтеза протекают при наличии одного из основных условий – света.

  1. Немаловажным условием фотосинтеза является присутствие углекислого газа. Рассмотрим опыт для демонстрации этого условия фотосинтеза.

Растение поместим на свет, прикроем прозрачным колоколом. Вместе с ним поставим сосуд со щелочью — она будет вбирать из воздуха углекислый газ. Со временем внутри колокола снижается количество углекислого газа. К концу дня срежем один лист, обесцветим его спиртовым раствором, а потом обольем йодом. Лист останется желтым.

После проведения опыта становится, очевидно, что без углекислого газа в клетках зеленых листьев крахмал не образуется даже на свету, значит, фотосинтез не протекает.

Подведя итог можно сказать, что основными условиями процесса фотосинтеза являются наличие зеленых листьев, света и углекислого газа. Только в этом случае растительный организм будет формировать органические вещества, необходимые для построения его тела, на образование клеток. Большая часть таких веществ еще и откладывается в запас, к примеру, в семенах, плодах и других органах.

К слову сказать, фотосинтез считается управляемым процессом. Его интенсивность повышается при улучшении освещенности растений, достаточном снабжении их водой и минеральными элементами, поддерживание в теплицах и парниках нужной температуры, а также достаточной концентрации углекислого газа в воздухе. 

Периоды развития биосферы

Следы обитаемой оболочки, окружающей Землю, обнаружены в осадочных породах архейского эона (около 3,5 млрд лет назад). Археологические находки той эпохи свидетельствуют о существовании древнейших органических остатков. Зарождение многогранной жизни на Земле началось с первых представителей биомассы, которыми можно считать:

  • одноклеточные водоросли;
  • простейшие прокариоты.

Простейшие органические формы обрели половое размножение только к концу архея, дав начало эволюционным процессам.

Мел-палеогеновое вымирание

Для эволюции биомассы характерна временная дестабилизация в результате масштабных катастроф (вымирание динозавров).

Непрерывное возобновление биомассы сформировало видовое разнообразие. Многочисленные животные и растения способствовали расширению биогенного круговорота и формированию геологического облика планеты. В процессе развития биосферы сложился основной принцип биомассы – в бионическом круговороте задействуются только живое и биокосное вещества.

Современное состояние и прогнозируемое будущее

Появление человека не сказывалось на развитии биосферы на ранних этапах. Деятельность человеческих существ и потребляемые ими ресурсы гармонично вписывались в круговорот веществ. С наступлением периода, когда люди научились менять условия среды обитания, равновесие в биосфере нарушилось. Стремление человека приспосабливать обитаемую оболочку под свои нужды постоянно дестабилизирует экосистему.

Негативными факторами для баланса обитаемой оболочки являются:

  • техногенное влияние на животный и растительный мир (вымирание растений, животных);
  • чрезмерное потребление биокосных и косных веществ.

Губительный подход человечества к экологии и условиям потребления ресурсов ведет к разрушению среды обитания жизненных форм. Биосфера не успевает восстанавливать компоненты, необходимые для поддержания жизненных процессов. Положение усугубляют загрязнение атмосферы, парниковые газы.

Биосферные заповедники

Группа конгони в саванне заповедника Мореми в Африке, Ботсвана

Сохранение биосферы – одна из важнейших экологических задач человечества. С этой целью в различных уголках планеты создаются резерваты глобальной экосферы – особо охраняемые природные зоны. Биосферные заповедники призваны решать следующие проблемы:

  • сохранение уникальных растений и животного генофонда при согласованном потреблении ресурсов;
  • мониторинг среды, изучение собранных данных.

Заповедные территории создаются под эгидой ЮНЕСКО. В список всемирного охраняемого наследия внесен 701 заповедник в 124 странах мира.

7.3.Кутикулярная транспирация

Снаружи листья имеют 
однослойный 
эпидермис,
внешние стенки клеток которого покрыты
кутикулой
и
воском, образующие эффективный
барьер на пути движения воды. На поверхности
листьев часто развиты волоски, которые
также влияют на водный режим листа, так
как снижают скорость движения воздуха
над его поверхностью и рассеивают свет
и тем самым уменьшают потери воды за счет
транспирации.

Интенсивность кутикулярной
транспирации варьирует у разных видов
растений. У молодых листьев с тонкой кутикулой
она может составлять около половины всей
транспирации. У зрелых листьев с более
мощной кутикулой кутикулярная транспирация
равна 1/10 общей транспирации.
В стареющих листьях из-за повреждения
кутикулы она может возрастать. Таким
образом, кутикулярная транспирация регулируется
главным образом толщиной и целостностью
кутикулы и других защитных покровных
слоев на поверхности листьев.

Структура Биосферы

Слово биосфера переводится как «сфера жизни», т.е. совокупность всех живых организмов. Они образуют многоуровневый комплекс взаимодействия различных экосистем на Земле. Под воздействием различных внешних и внутренних факторов биосфера постоянно изменяется.

Она растянулась на десятки километров:

  • Нижний уровень в литосфере (3,5 – 7,5 км);
  • Следующий уровень в гидросфере (10 – 11 км);
  • Верхняя граница в нижних слоях атмосферы (15 – 20 км).

Узнайте больше об экологической безопасности и социальной поддержке граждан.

Типы веществ Биосферы

Единое комплексное решение по изучению биосферы вывел советский ученый Вернадский В.И

Он впервые отвел самую важную роль живому организму в развитии планеты Земля, принимая во внимание не только их настоящую деятельность, но и прошлую. Согласно учениям Вернадского, биосфера разделяется на следующие типы веществ:

  1. Живое вещество. Все живые.
  2. Биогенное вещество.
  3. Косное вещество.
  4. Биокосное вещество.

Атмосфера

Атмосфера – это газовая оболочка Земли, которая разделяется на три слоя: тропосфера, стратосфера и ионосфера. Но жизненные процессы происходят только в тропосфере (на высоте до 20 км), где озоновый слой защищает живые организмы от пагубного воздействия ультрафиолетовых лучей.

Гидросфера

Гидросфера – это оболочка Земли, состоящая из воды. Она включает в себя моря, океаны, реки, озера, подземные воды, ледники. Гидросфера заселена живыми организмами полностью и целиком является частью биосферы.

Литосфера

Литосфера – это земная кора, твердая оболочка Земли, уходит вглубь на 200 км. Поверхностный слой литосферы – нижний слой биосферы. Чем глубже, тем выше температура. При определенной глубине температура достигает такого уровня (около 1000С), что происходит процесс свертывания белков, и живые организмы выжить здесь не могут. Но живые организмы обычно обитают на глубине всего лишь нескольких метров, так как на больших глубинах возникают проблемы с поиском пищи, а грунт становится более твердый из-за преобладания горных пород.

Как идет процесс фотосинтеза?

Световая фаза фотосинтеза для ЕГЭ и ОГЭ

Световая фаза проходит в хлоропластах на тилакоидах. Там хранится пигмент хлорофилл, с которого все начинается — именно из-за него растения имеют зеленую окраску. Квант света попадает на тилакоид и возбуждает молекулу хлорофилла. В этот момент инициируется процесс фотосинтеза. При этом выделяется энергия АТФ. 

Параллельно идет фотолиз воды. 

На что же может распасться молекула воды? На свободный кислород и водород. У каждого из этих элементов свой путь. 

Кислород — это сильный окислитель, буквально смерть для любой неспециализированной клетки, поэтому растения быстро от него избавляются, выделяя в атмосферу как побочный продукт. А уже из атмосферы аэробные организмы (в том числе, растения) поглощают его и используют для дыхания. Так что нам повезло! Не было бы процесса фотосинтеза, не было бы кислорода и что было бы с жизнью на нашей планете представить сложно. 

Но помимо кислорода, выделяется еще водород, если бы он был человеком, мы бы сказали, что он растерян и нуждается в помощи. На помощь к нему приходит молекула-переносчик НАДФ (полное ее название —никотинамиддинуклеотидфосфат, но мы ласково зовем ее НАДФ). Она использует водород для восстановления до НАДФ*Н2. Задача этой молекулы переносить водород из тилакоидов в строму, поэтому мы называем ее молекула-переносчик. На этом световая фаза заканчивается.

  • Квант света возбуждает молекулу хлорофилла
  • Инициируется процесс фотосинтеза
  • Выделяется АТФ
  • Фотолиз воды
  • Кислород выходит в окружающую среду как побочный продукт фотосинтеза
  • Водород соединяется с молекулой переносчиком НАДФ*

Темновая фаза фотосинтеза для ЕГЭ и ОГЭ

В некоторых источниках эту фазу еще называют светонезависимой фазой. Действительно, название «темновая стадия» часто вызывает затруднения. Кажется, что световая проходит на свету, а темновая тогда в темноте, но это не так. Для темновой фазы действительно не нужен свет, соответственно, у нее есть варианты — может  проходить и на свету, и в темноте. Она идет  практически параллельно со световой и в ней используются продукты, образовавшиеся в световой фазе. 

Для того чтобы фазы друг другу не мешали, они проходят в разных частях хлоропласта. Световая, как мы уже выяснили, идет на тилакоидах, а темновая в строме — это внутренняя полужидкая среда хлоропласта.

В строму приходят АТФ, молекула-переносчик приносит водород. Но из водорода и энергии ничего органического создать не получится, нужны еще элементы. Растения нашли гениальный выход, они используют вещество, которого достаточно в атмосфере, следовательно, за него нет конкуренции. Это вещество — углекислый газ. 

Преамбула

Основой жизни на Земле являются круговороты веществ в биосфере и постоянный приток солнечной энергии. Круговорот веществ — цикличный, многократно повторяющийся процесс перемещения и перехода химических элементов из живых тел в соединения неживой природы и обратно. С использованием солнечной энергии на планете протекает два взаимосвязанных круговорота веществ: большой — геологический и малый — биологический.

Геологический (большой) круговорот веществ — процесс миграции веществ и природных вод, происходящий в результате воздействия абиотических факторов (факторов неживой природы). При большом геологическом круговороте, протекающем миллионы лет, горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Биологический (малый) круговорот веществ — процесс циркуляции веществ между растениями, животными, грибами, микроорганизмами, атмосферой и почвой. Все химические элементы, используемые в процессах жизнедеятельности организмов, постоянно перемещаются, переходя из живых тел в соединения неживой природы и обратно. Так, в природе из неорганических веществ автотрофами синтезируются органические вещества. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Возможность многократного использования веществ делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии Солнца.

Круговорот углерода

Углерод в атмосфере содержится в основном в составе углекислого газа. Первичный источник углекислого газа — вулканическая деятельность. Биосферный цикл углерода начинается с процесса фотосинтеза. Ежегодно в него вовлекается до 50 млрд т углерода. Растения поглощают его в составе углекислого газа. Продуцируемые ими органические вещества содержат значительное количество углерода (более 50 % углерода биосферы заключено в целлюлозе, составляющей основу клеточных стенок растений). Эти вещества используют сами растения и животные (консументы) для получения энергии. Кроме того, соединения углерода используются морскими организмами для построения раковин и скелетных образований. Одновременно с этим происходит обратный процесс. Углерод возвращается в среду, замыкая цикл, двумя путями. Первый путь — в виде углекислого газа, который образуется в процессе дыхания живых организмов. Второй путь — разложение (минерализация) детрита редуцентами. Один цикл круговорота углекислого газа проходит за 300 лет.

Однако цикл круговорота углерода замкнут не полностью. Часть углерода, как мы уже отмечали, на продолжительное время выводится из круговорота, концентрируясь в залежах торфа, каменного угля, нефти и горючих сланцев, образующихся при разложении детрита без доступа кислорода, а также в мощных отложениях известняков на дне морей и океанов, образованных из остатков раковин и скелетов отмерших морских организмов.

Воздействие человека на цикличность процесса

Сжигание ископаемого топлива

При сжигании нефти или угля углерод выбрасывается в атмосферу быстрее, чем удаляется. В результате концентрация углекислого газа в атмосфере увеличивается. Природный газ, нефть и уголь являются ископаемыми видами топлива, которые обычно сжигаются для выработки электроэнергии на электростанциях, для транспорта, в домах и в других промышленных комплексах.

Основными видами промышленной деятельности, которые выделяют углекислый газ и влияют на углеродный цикл, являются переработка нефти, производство бумаги, продуктов питания и полезных ископаемых и производство химических веществ.

Связывание углерода

Методы ведения сельского и лесного хозяйства могут повлиять на то, сколько углекислого газа удаляется из атмосферы и накапливается растениями. Этими поглотителями углекислого газа могут быть фермы, луга или леса. Деятельность человека по управлению сельскохозяйственными угодьями или лесами влияет на количество углекислого газа, удаляемого из атмосферы растениями и деревьями. Эти поглотители углекислого газа влияют на углеродный цикл, уменьшая его количество в воздухе.

Вырубка леса

Вырубка лесов означает, что новые деревья не будут посажены на месте их вырубки. В крупных масштабах это приводит к повышению уровня углекислого газа в атмосфере, поскольку деревья больше не поглощают его для фотосинтеза. В результате нарушается углеродный цикл. По данным National Geographic, сельское хозяйство является основной причиной вырубки лесов. Фермеры вырубают деревья в больших масштабах, чтобы увеличить посевные площади для сельскохозяйственных культур и домашнего скота.

Деятельность человека может повлиять на круговорот углерода, улавливая углекислый газ и храня его под землей, а не позволяя ему выбрасываться в атмосферу.

Что такое фотосинтез?

Почему растения фотосинтезируют? Стандартный ответ: «Потому что они зеленые». 

На самом деле, растения получили способность к фотосинтезу благодаря наличию симбиотических органоидов — хлоропластов,  в которых и происходят темновая и световая фазы, а в хлоропластах содержится пигмент хлорофилл, именно он окрашивает растения в зеленый цвет. 

Фотосинтез — одна из реакций обмена веществ. Как любая реакция метаболизма, он идет поэтапно (световая и темновая фазы) и с участием ферментов. Фотосинтез относится к реакциям пластического обмена. Особенность пластического обмена в том, что органические вещества синтезируются, а энергия на это тратится. 

Далее разберем подробно обе фазы и процессы, происходящие в них.

Понравилась статья? Поделиться с друзьями:
ГЕО-АС
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: