Аравийская литосферная плита
Эта плита расположена в северном и восточном полушариях. Она состоит из Аравийского полуострова и простирается на запад на Синайском полуострове и в Красном море и на север до Леванта. Площадь плиты – 5 млн км 2 . Она движется со скоростью 1,5-2 см в год.
Восточная часть плиты граничит с Индийской плитой, южная – с Африканской на западе и Сомалийской и Индийской на востоке. Северная сторона Аравийской плиты – с Евразийской, восточная – с Африканской.
Эта плита была частью Африканской в течение долгого времени. Разделение этих плит произошло примерно 25 млн лет назад. С тех пор Аравийская плита медленно двигалась в сторону Евразийской.
На территории Аравийской плиты существуют крупные вулканические поля, которые называют Старыми Хараратами. Они покрывают большую часть плиты. Эти вулканы являются действующими: в Красном море происходят регулярные извержения.
Это одна из трех материковых плит (Африканская, Арабская и Индийская), которые в новейшей истории геологии перемещались в северном направлении и сталкивались с Евразийской плитой. Из-за этих столкновений многие города находятся в опасности: им грозят землетрясения, цунами и извержения вулканов.
География – область научных исследований, которые решают вопросы взаимосвязи особенностей природы с поверхностью Земли и жизнедеятельностью человека. Литосфера – твердая оболочка Земли, которая влияет на образование рельефа поверхности. Структуру литосферы образуют земная кора и верхний подвижный пласт мантии. Образование земной поверхности происходит благодаря литосферным блокам.
Рис. 1. Литосфера в географии
Озера Памира: гидрологический богатырь и экологическая ценность
Озера Памира представлены как крупными озерами, так и многочисленными горными озерцами. Одним из самых известных озер Памира является Каракульское озеро, расположенное на высоте почти 4000 метров над уровнем моря. Это озеро поражает своей кристальной чистотой воды и окружающими его горами, которые создают захватывающий пейзаж. Каракульское озеро служит источником питания для многочисленных горных рек и потоков, а также является уникальным местом для разведения редких видов рыб.
Озера Памира играют важную роль в гидрологической системе Центральной Азии, обладая не только значительными запасами пресной воды, но и участвуя в формировании климата в регионе. Они также являются местом жизни для множества редких и уязвимых видов растений и животных, охраняемых как национальным, так и международным уровнем.
Одной из особенностей озер Памира является их незаурядная экологическая ценность. Они служат местом гнездования и пернатым и мигрирующим птицам, а также обладают уникальными гидробиологическими особенностями. Здесь можно наблюдать уникальные виды рыб, моллюсков, водных насекомых и других организмов, которые приспособились к экстремальным условиям высокогорных обитаний.
Название озера | Характеристики | Экологическая ценность |
---|---|---|
Каракульское озеро | Высота: около 4000 м; Кристально чистая вода; Стоковая активность | Источник пресной воды; Место разведения редких видов рыб; |
Мургабское озеро | Высота: около 3600 м; Богатство флоры и фауны; Циркуляция воды | Жизненное пространство для многих видов растений и животных |
Сары-Озёрное озеро | Высота: около 3500 м; Геоморфологический интерес; Уникальные гидробиологические показатели | Место миграции и гнездования птиц; Интерес для исследователей |
Озера Памира являются важными объектами природы и географии, привлекающими внимание множества исследователей и туристов. Они благотворно влияют на окружающую среду и играют ключевую роль в поддержании экологической равновесия в этом уникальном регионе
Эти гидрологические богатыри являются жемчужинами континента и заслуживают особого внимания и защиты.
Геологическая активность
Литосферные плиты движутся очень медленно — они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности — извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.
Однако есть исключения — так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую — нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.
Динамика мантии
Интересный факт — в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них вулкан Олимп на Марсе, самая высокая точка планеты — высота его достигает 27 километров!
Океаническая и континентальная кора Земли
Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.
Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит
Возраст океанической коры (красный соответствует молодой коре, синий — старой). Смотреть в полном размере.
Континентальная кора, напротив, находится на стабильных участках литосферы — ее возраст на отдельных участках превышает 2 миллиарда лет, а некоторые минералы зародились вместе с Землей! Отсутствие активных разрушительных процессов позволило развиться мощному слою осадочных пород, а также сохранить прослойки разных эпох развития планеты. Это позволило также создать метаморфические вещества — минералы, сформированные за счет попадания осадочных или магматических пород в непривычные условия. Яркими примерами таких минералов являются алмазы.
Тектонические структуры
Платформы
Длительная история формирования евроазиатского континента обусловила, что на его территории есть все типы основных тектонических структур планеты. В основании современного материка Евразии находятся устойчивые континентальные древнейшие ядра земной коры – платформы. По расположению на континенте их называют Европейской, Сибирской, Китайской, Аравийской и Индийской, соединены платформы подвижными складчатыми геосинклинальными поясами.
Крупнейший на планете и гигантский по размеру материк занимает обширную Евразийскую и часть Индо-Австралийской литосферных плит. В месте соприкосновения этих плит литосфера очень подвижна, смята в крупные складки, сейсмически и вулканически активна, образуя протянувшийся почти на 16 тыс. км. Альпийско-Гималайский тектонический складчатый пояс.
Основание платформ слагают древнейшие в мире докембрийские породы, выступающие на поверхность в виде кристаллических цокольных массивов или тектонических щитов. На месте Украинского, Балтийского, Алданского и Анабарского щитов, также на Индостане и в центральной Аравии формы рельефа представлены высокими цокольными плато из древнейших пород докембрия.
В раннепалеозойское и мезозойское время до наступления современной альпийской складчатости древнейшие докембрийские ядра старых платформ были соединены в единый континент молодыми платформами или плитами Западно-Сибирской и Туранской. Это равнинные области, поднявшиеся из океана позже старых платформ, но покрытые мощным чехлом морских и соответственно континентальных осадочных толщ.
Складчатые пояса
В тектоническом строении континента есть участки земной коры, находящиеся в области соприкосновения литосферных плит, не закончившие формирование по сей день, это так называемые складчатые пояса. На материке их два: Тихоокеанский и Альпийско-Гималайский. В складчатых поясах образование складок не закончилось, и сегодня продолжаются активные тектонические и вулканические процессы.
По югу единой евроазиатской плиты от Гибралтара до Индонезии расположен Альпийско-Гималайский пояс, включающий в себя Балканский, Пиренейский и Аппенинский п-ва, Крым и Малую Азию, Армянское нагорье и Загрос, Иранское нагорье и Кавказ, Гиндукуш и высочайшие на континенте и планете Гималаи. Он состоит из покровно-складчатых гор, сформированных в мезозойском океане Неотетис в кайнозое.
В Тихоокеанский складчатый пояс вошли Сахалин и Камчатка, Курилы, Японский и Малайский архипелаги. Складчатый пояс, называемый частью Тихоокеанского огненного кольца, расположен на восточной окраине континента в месте соприкосновения литосферных плит материка и океана рядом с глубочайшими тихоокеанскими впадинами. Здесь происходит подтекание тонкой океанической плиты под мощную окраину континента, это процесс сопровождается появлением высокогорных складчатых систем.
Именно на территории складчатых поясов находятся высочайшие на материке действующие вулканические системы Везувия, Этны, Геклы, Ключевской Сопки, Фудзиямы, Кракатау, именно эти зоны характеризуются повышенной сейсмичностью. Территория здесь сложена морскими осадочными отложениями со скрывающимися на большой глубине складчатыми ядрами. Рельеф складчатых поясов представлен альпийскими формами, высокими молодыми горами с остроконечными вершинами – пиками.
В окраинных цепях гор альпийской складчатости, хребтах Балкан и Карпат, Апеннин, Динарских гор и Тавра, образовавшихся в предгорных прогибах, заполненных карбонатами, представлен среднегорный сильно расчлененный эрозионными процессами рельеф. Широкое распространение карбонатов в альпийских формах рельефа Апеннинских и Динарских гор и Тавра создало великолепные природные условия для образования карста. По линиям мощных тектонических разломов на Средиземноморском побережье, в Карпатах и Армянском нагорье идут активные вулканические процессы.
Проблемы литосферы
Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.
Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.
Литосферные плиты и их движение. Океаническая и континентальная кора Земли
Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.
Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит
Возраст океанической коры (красный соответствует молодой коре, синий — старой).
Кора Земли разделена разломами на литосферные плиты, представляющие собой огромные цельные блоки, достигающие верхних слоев мантии. Они являются крупными стабильными частями земной коры и находятся в непрерывном движении, скользя по поверхности Земли. Литосферные плиты состоят либо из материковой, либо из океанической коры, а в некоторых континентальный массив сочетается с океаническим. Выделяют 7 наиболее крупных литосферных плит, которые занимают 90% поверхности нашей планеты: Антарктическая, Евразийская, Африканская, Тихоокеанская, Индо-Австралийская, Южноамериканская, Североамериканская. Кроме них существуют десятки плит средних размеров и много мелких. Между средними и крупными плитами находятся пояса в виде мозаик из мелких плит коры.
Теория тектоники литосферных плит
Теория литосферных плит изучает их движение и процессы, связанные с этим движением. Данная теория гласит о том, что причиной глобальных тектонических изменений является горизонтальное перемещение блоков литосферы — плит. Тектоника литосферных плит рассматривает взаимодействие и движение блоков земной коры.
Теория Вагнера
О том, что литосферные плиты горизонтально перемещаются, впервые высказал предположение в 1920-х годах Альфред Вагнер. Он выдвинул гипотезу о «дрейфе континентов», но она в то время не была признана достоверной. Позже, в 1960-х годах, проводились исследования океанического дна, в результате которых подтвердились догадки Вагнера о горизонтальном движении плит, а также выявлено наличие процессов расширения океанов, причиной которых является формирование океанической коры (спрединг). Основные положения теории в 1967-68 годах сформулировали американские геофизики Дж. Айзекс, К. Ле Пишон, Л. Сайкс, Дж. Оливер, У. Дж. Морган. Согласно этой теории границы плит находятся в зонах тектонической, сейсмической и вулканической активности. Границы бывают дивергентными, трансформными и конвергентными.
Движение литосферных плит
Литосферные плиты приходят в движение вследствие перемещения вещества, находящегося в верхней мантии. В зонах рифтов это вещество прорывает кору, расталкивая плиты. Большая часть рифтов располагается на океаническом дне, так как там земная кора гораздо тоньше. Наиболее крупные рифты, которые существуют на суше, находятся возле озера Байкал и Великих Африканских озер. Движение литосферных плит происходит со скоростью 1-6 см за год. Когда они между собой сталкиваются, на их границах возникают горные системы при наличии материковой коры, а в случае, когда одна из плит имеет кору океанического происхождения, образуются глубоководные желоба.
Основные положения тектоники плит сводятся к нескольким пунктам
- В верхней каменной части Земли существуют две оболочки, которые значительно отличаются по геологическим характеристикам. Этими оболочками являются жесткая и хрупкая литосфера и находящаяся под ней подвижная астеносфера. Подошва литосферы представляет собой раскаленную изотерму температурой 1300°С.
- Литосфера состоит из непрерывно движущихся по поверхности астеносферы плит земной коры.
Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым «чехлом». Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.
Аномальная мантия
Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.
Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.
В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.
Суперконтинент Амазия
Все слышали о древнем огромном материке, который ученые окрестили «Пангея». Он существовал 300 миллионов лет назад, но разделился на несколько континентов из-за движения литосферных плит.
Плиты продолжают свое движение и сейчас. Скорее всего, через несколько сотен миллионов лет на Земле появится новый огромный континент. Его уже успели назвать Амазией. Согласно этой теории, Северная и Южная Америки вновь соединятся, а затем вместе направятся на север и столкнутся с Евразией.
Также есть две менее популярные теории. Одна из них говорит о том, что новый суперконтинент появится на том же месте, где размещалась «Пангея». А другая утверждает, что Амазия появится с обратной стороны земного шара (в Тихом океане).
Планеты, достигая глубины внешнего ядра . С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания плит меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Интересные факты о Евразийской плите
Знаете ли вы, что на третьей по величине литосферной плите также можно проследить некоторые горячие точки? Некоторые достойные упоминания горячие точки, обнаруженные в этом регионе, включают горячие точки Азорских островов, Эйфеля и Исландии. Некоторые геологи оспаривают, что некоторые из этих горячих точек на самом деле являются рассадниками вулканической активности. Вот несколько интригующих фактов о Евразийской плите.
- Поскольку Земля имеет сферическую форму, тектоника плит также распадается на изогнутые структуры, которые постоянно находятся в движении. Когда эти тектоники плит встречаются в определенном месте, они считаются границами плит. Движение тектонических плит помогает сформировать несколько географических объектов вблизи плиты. границы, такие как океанские впадины, хребты, горные хребты, цепи вулканов, линии разломов и островные дуги. Как и Тибетское нагорье, образование Альп также было вызвано столкновением тектоники африканских и евразийских плит.
- С другой стороны, Срединно-Атлантический хребет является прекрасным примером Континентальный дрифт. Хребет образовался в результате дивергенции тектоники плит, когда пара Евразийской плиты и Северной Американская плита сместилась на север, а дуэт Африканской плиты и Южно-Американской плиты сместился к северу. юг. Океанические бассейны с каждым годом становятся все шире.
- Средиземное море расположено в желобе, который образует границы плит между Евразийской плитой и Африканской плитой. Расхождение Евразийской плиты и Североамериканской плиты привело к бесчисленным извержениям вулканов вокруг границ плит Исландии.
- Некоторые заслуживающие внимания извержения вулканов включают извержение Лаки в 1783 году, которое вызвало падение глобальной температуры после того, как оно произошло. Другим заслуживающим упоминания извержением вулкана было извержение Эльдфелла в 1973 году, которое продолжалось примерно шесть месяцев и разрушило сотни домов в близлежащих районах.
- Тектоника плит участвует в схеме вращательного движения. В то время как некоторые вращаются по часовой стрелке, другие следуют функции против часовой стрелки. Например, Североамериканская плита вращается против часовой стрелки, в то время как в случае с Евразийской плитой наблюдается обратное, поскольку она движется в южном направлении. Однако точное движение или скорость тектонической плиты крайне непредсказуемы, поскольку она всегда находится в движении. Это одна из основных причин, по которой стихийные бедствия часто приводят к ужасным потерям жизни и имущества, поскольку их так сложно контролировать и управлять ими.
- С момента создания этих тектонических плит они находились в движении, и можно сделать вывод, что они, скорее всего, не остановятся до исчезновения самой Земли. Однако геологи занимаются изучением динамики этих тектонических плит, чтобы человечество могло лучше подготовиться к приближающимся бедствиям.
Литосферные плиты на карте и их названия.
Рис. 4. Названия литосферных плит на карте Мира.
Основной список литосферных плит составляют огромные блоки с площадью больше 20 млн. км². На этих блоках сосредоточена значительная часть континентальной массы и сосредоточены воды Мирового океана.
- Тихоокеанская плита – океаническая тектоническая плита под Тихим океаном – 103.300.000 км²;
- Северо-Американская тектоническая платформа, включает континенты: Северная Америка, восточная часть Евразии и остров Гренландия – площадью 75.900.000 км²;
- Евразийская платформа – тектонический блок, включает в себя часть континента Евразия – 67.800.000 км²;
- Африканская – лежит в основе Африки – 61.300.000 км²;
- Антарктическая – составляет материк Антарктиду и океаническое дно под окружающими океанами – 60.900.000 км²;
- Индо-Австралийская – Основная тектоническая платформа, образована путем слияния индийских и австралийских пластин – 58.900.000 км² . Часто разделяют на два блока: Австралийская плита, первоначально являлась частью древнего континента Гондваны – 47.000.000 км², Индийская или Индостанская – так же была частью суперконтинента Гондвана – 11.900.000 км²;
- Южноамериканская – тектоническая платформа, которая включает в себя часть Южной Америка и часть Южной Атлантики – 43.600.000 км².
Рис. 5. Литосферные плиты на карте Мира
Литосферные плиты
Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.
Смещения литосферы
О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:
- Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
- В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.
Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.
Динамическая схема Земли. Смотреть в полном размере.
Главные плиты
За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.
Интересный факт — дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, Ио, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с Юпитером, из-за которого недра Ио разогреваются.
Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:
- Австралийская
- Антарктическая
- Африканская
- Евразийская
- Индостанская
- Тихоокеанская
- Северо-Американская
- Южно-Американская
Карта литосферных плит
Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.